If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x2 + 5x + 2.0833333 = 0 Reorder the terms: 2.0833333 + 5x + 3x2 = 0 Solving 2.0833333 + 5x + 3x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 0.6944444333 + 1.666666667x + x2 = 0 Move the constant term to the right: Add '-0.6944444333' to each side of the equation. 0.6944444333 + 1.666666667x + -0.6944444333 + x2 = 0 + -0.6944444333 Reorder the terms: 0.6944444333 + -0.6944444333 + 1.666666667x + x2 = 0 + -0.6944444333 Combine like terms: 0.6944444333 + -0.6944444333 = 0.0000000000 0.0000000000 + 1.666666667x + x2 = 0 + -0.6944444333 1.666666667x + x2 = 0 + -0.6944444333 Combine like terms: 0 + -0.6944444333 = -0.6944444333 1.666666667x + x2 = -0.6944444333 The x term is 1.666666667x. Take half its coefficient (0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. 1.666666667x + 0.6944444447 + x2 = -0.6944444333 + 0.6944444447 Reorder the terms: 0.6944444447 + 1.666666667x + x2 = -0.6944444333 + 0.6944444447 Combine like terms: -0.6944444333 + 0.6944444447 = 0.0000000114 0.6944444447 + 1.666666667x + x2 = 0.0000000114 Factor a perfect square on the left side: (x + 0.8333333335)(x + 0.8333333335) = 0.0000000114 Calculate the square root of the right side: 0.000106771 Break this problem into two subproblems by setting (x + 0.8333333335) equal to 0.000106771 and -0.000106771.Subproblem 1
x + 0.8333333335 = 0.000106771 Simplifying x + 0.8333333335 = 0.000106771 Reorder the terms: 0.8333333335 + x = 0.000106771 Solving 0.8333333335 + x = 0.000106771 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 0.000106771 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 0.000106771 + -0.8333333335 x = 0.000106771 + -0.8333333335 Combine like terms: 0.000106771 + -0.8333333335 = -0.8332265625 x = -0.8332265625 Simplifying x = -0.8332265625Subproblem 2
x + 0.8333333335 = -0.000106771 Simplifying x + 0.8333333335 = -0.000106771 Reorder the terms: 0.8333333335 + x = -0.000106771 Solving 0.8333333335 + x = -0.000106771 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -0.000106771 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -0.000106771 + -0.8333333335 x = -0.000106771 + -0.8333333335 Combine like terms: -0.000106771 + -0.8333333335 = -0.8334401045 x = -0.8334401045 Simplifying x = -0.8334401045Solution
The solution to the problem is based on the solutions from the subproblems. x = {-0.8332265625, -0.8334401045}
| -11x=-4x^2+3 | | 5+4x=-9 | | z=100x+50y | | 5(x-1)=x-7 | | w^2-4w-32= | | 2xsquared+4x-4=0 | | 100x=f(x)-50y | | 240=2x+x-20 | | 7(x-49)=49 | | 314=3.14*r^23 | | 240=2x+(x-20) | | 3x^2+5x+k=0 | | 0+-6x=66 | | 0.5x^2+4x-8=0 | | 12+x=12x | | 12+x=16x | | 8x-8y-12=0 | | 12t=45(t-1/4) | | 160-6x=39x+15 | | P^2-7=0 | | 3(6b)=2(2a+5b) | | 3(6b)=2(2a+58) | | 18b=4a+10b | | 6x^2+23x-36=0 | | 4/x+1=9 | | 7+9x-1=4x+8+5x | | 207.24=3.14*d | | x=50+-1y | | 28=3x+6 | | 59-5x=13+21 | | (2x+3)/3=0 | | 142-4x=5x-16 |